

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Absorptive NO_x-Reduction

W. Zapfel^a; R. Marr^a; M. Siebenhofer^b

^a Institut für Thermische Verfahrenstechnik und Umwelttechnik, Graz ^b VTU-Engineering GmbH, Graz

To cite this Article Zapfel, W. , Marr, R. and Siebenhofer, M.(1997) 'Absorptive NO_x-Reduction', Separation Science and Technology, 32: 1, 617 — 640

To link to this Article: DOI: 10.1080/01496399708003219

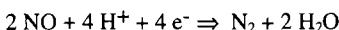
URL: <http://dx.doi.org/10.1080/01496399708003219>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.


ABSORPTIVE NO_x-REDUCTION

W. Zapfel, R. Marr

Institut für Thermische Verfahrenstechnik und Umwelttechnik
Inffeldgasse 25, A-8010 Graz
M. Siebenhofer
VTU-Engineering GmbH
Grottenhofstraße 3, A-8010 Graz

ABSTRACT

Absorptive reduction of NO-from off-gas has been investigated. With regard to negligibly low solubility of nitrogen monoxide in aqueous solutions, technical application of any absorption process has to be based on absorption with chemical reaction at the interphase. The present investigations have been based on the redox reaction

Combining this thermodynamic principle of NO-reduction with a redox-absorption process should enable separation processes comparable with SCR-denoxing. Several processes with promising redox conditions have been investigated. The program has considered the reactivity, the nature of products and mass transfer problems. The results confirm, that NO itself does not participate any kind of reactive absorption process. Nitrogen monoxide has to be preferably oxidized in a first step to form NO₂ and has to be absorbed in a second step. Depending on the ratio of NO/NO₂ (or NO/N₂O₄) the products may differ. Gaseous N₂ has definitely been observed only, when absorbing NO₂/N₂O₄.

INTRODUCTION

In denoxing, physical absorption processes suffer from negligible efficiency. Enhancement by the use of complexing agents has been reported. Iron(II) compounds are well-known complexing agents (1-9). But their effect on NO-separation is beyond technical demand. Besides, their chemical stability is low. As a matter of fact selective catalytic reduction (SCR) is still the only process which has gained technical application in the

denoxing of off-gas. But off-gas in different processes, mainly incineration processes applied in waste management, may cause a rapid loss of activity of the catalysts used in denoxing processes.

Technical application of the absorptive removal of nitrogen monoxide from off-gas demands either oxidation or reduction of the species within the separation process. The chemical fundamentals and the basic mass transfer problems of several absorption processes have been investigated. The objective of the program has been the evaluation of methods for absorptive NO_x -removal from off-gas and the investigation of processes of technical interest. Nitrogen monoxide has mainly been considered.

FUNDAMENTALS OF NO_x -FORMATION

Before dealing with absorptive methods a brief summary of gaseous and gas/liquid interactions of NO will be discussed.

The main NO_x gases are NO, NO_2 , N_2O_3 and N_2O_4 . The very low solubility of NO in water ($H_{298\text{K}}=28,000$ bar) (10) does not enable absorptive separation. The higher nitrogen oxides NO_2 , N_2O_3 and N_2O_4 show a better solubility in water. Following reactions may occur in the gaseous phase (11):

Oxidation of NO to NO_2 is a third order reaction (second order with regard to NO) (12,13) and the NO_2 -concentration (% by volume) can be calculated with equation 5 when using air as carrier. The parameter t_R (s) represents the reaction time.

$$[\text{NO}_2] = \frac{k_2 * t_R * [\text{NO}]^2}{1 + k_2 * t_R * [\text{NO}]} \quad (5)$$

The rate constant k_2 ($\text{%-}^1\text{s}^{-1}$) of the experimental data (13) can be expressed by equation 6:

$$k_2 = 0.062 * \exp(-0.011 * T) \quad (6)$$

Nitrogen dioxide and the dimer N₂O₄ form an instant equilibrium (11,13). The rate constant K_{G1} (kN/m²)⁻¹ of equation 2 is given by the expression:

$$\log_{10} K_{G1} = \frac{2993}{T} - 11.232 \quad \text{with } K_{G1} = \frac{pN_2O_4}{p^2 NO_2} \quad (7)$$

Figure 1 shows the temperature dependency of equation 7. If the content of NO₂ is less than 100 ppmv, the formation of N₂O₄ is negligible ($\leq 0.5\%$). Both oxides (NO₂ and N₂O₄) are soluble in water, but the Henry coefficient of the dimer N₂O₄ is 100 times smaller with water than the Henry coefficient of NO₂ (10). Both oxides react equimolar by forming nitrous and nitric acid. As known from nitric acid production, nitrous acid decomposes to nitric acid and NO, which desorbs into the gaseous phase. Further, mixtures of NO and NO₂ react to N₂O₃ corresponding to equation 3. The rate constant K_{G2} (kN/m²)⁻¹ of the formation of N₂O₃ corresponds with the expression below (11):

$$\log_{10} K_{G2} = \frac{2072}{T} - 9.24 \quad K_{G2} = \frac{pN_2O_3}{pNO * pNO_2} \quad (8)$$

Figure 2 shows the formation of N₂O₃ with varying NO_x-concentration. A maximum of N₂O₃ is formed at an equimolar ratio of NO/NO₂ (see equation 8). In spite of the optimum ratio of NO/NO₂, the formation of N₂O₃ decreases with NO_x-contents of less than 1000 ppmv (NO + NO₂).

NO₂, N₂O₃ and N₂O₄ react with water. Therefore no direct measurement of the Henry coefficient is possible. An estimation of Henry coefficients, represented in table 1, is based on liquid phase equilibria, kinetic studies and physical properties (10).

STATE OF THE ART AND FIELD OF INVESTIGATION

The technological pathways of the absorptive removal of nitrogen monoxide may be classified by the groups listed below:

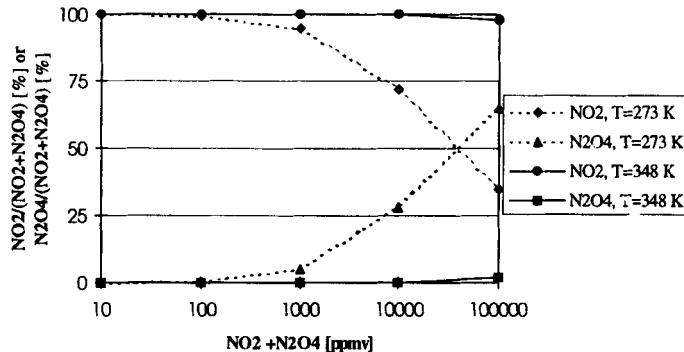


FIGURE 1. Gaseous phase equilibrium of $\text{NO}_2/\text{N}_2\text{O}_4$ in the temperature range of 273-348 K (NO_x describes either NO_2 or N_2O_4)

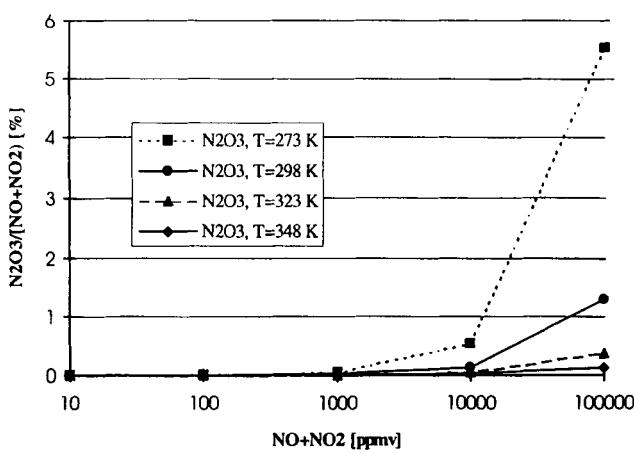


FIGURE 2. Gaseous phase equilibrium of N_2O_3 in the temperature range of 273-348 K; ratio of $\text{NO}/\text{NO}_2 = 1$

TABLE 1. HENRY COEFFICIENTS OF NO, NO₂, N₂O₃ AND N₂O₄, T=298 K

	<i>H [M*atm]</i>	<i>H [bar]</i>
NO	1.93*10 ⁻³	28,400
N ₂ O ₃	0.6±0.2	92.6 ± ^{46.3} _{23.1}
NO ₂	1.2 ±0.4*10 ⁻²	4,630 ± ^{2,315} _{1,160}
N ₂ O ₄	1.4±0.7	39.7 ± ^{39.7} _{13.5}

Oxidation-Absorption Processes

This process has become known by the synonym Walther-process (14). It was initially published in the eighties and was thought to combine pollution control with the recovery of the fertilizer ammonium nitrate. In a first step, NO was oxidized in the gaseous phase by ozone to form NO₂ and the dimer N₂O₄. In a second step these substances were absorbed in aqueous ammonia by forming the nitrite and the nitrate of ammonia. Both the enormous cost for the production of ozone and the low efficiency in products limited the practical application.


Absorption-Oxidation Processes

In the presence of strong oxidizers (KMnO₄, K₂Cr₂O₇, NaClO₂ etc.), the aqueous solution of NO and its derivates (NO₂, N₂O₃ and N₂O₄) will be oxidized by forming nitrate (8, 11). As oxidation takes place in the aqueous phase, the process is limited by the mass transfer conditions for the substance NO from the gaseous to the liquid phase. Finally the products do have a low level of quality and demand a lot of purification (31). These processes are therefore very expensive.

Absorption-Reduction Processes

Compared with the absorption techniques mentioned above, the absorption-reduction process works on the chemical principle of nitrogen formation from NO_x. In case

of NO-absorption, the process corresponds with the basic thermodynamic reactions (15):

The process should not cause any by-products or residues and it should therefore be comparable with the process of selective catalytic reduction. Actually the basic reaction is an ideal boundary as several by-products will be formed under given conditions of operation.

Within this program several techniques and additives have been investigated. For comparison, the program was started with mass transfer experiments using iron(II) containing solvents. Literature reports improvement in the efficiency of absorption of NO_x when iron(II) containing solvents are applied at elevated pH-values and low oxygen content of the off-gas (1-8).

The effect of SO_2 on the efficiency of NO_x -absorption by Fe(II) does have a high degree of technical interest. But this process must be operated under alkaline conditions (11, 16-19).

Compared with the separation of NO by the formation of nitrosyls the efficiency of reduction of NO to nitrogen is negligible (20). But in comparison, the NO_x -separation based on the reduction of NO_2 by the solvent or in the solvent is of technical interest. Summing up these boundaries therefore means that pretreatment of the gaseous phase by oxidizing NO to form $\text{NO}_2/\text{N}_2\text{O}_4$ is necessary.

Table 2 represents the qualitative evaluation of additives, which have been investigated during the program. As shown by the results, the reduction of NO has only been observed when the system Fe(II)/ SO_2 was applied. But several additives do react with NO_2 and they do preferably cause the formation of nitrogen.

EXPERIMENTAL SET UP

This investigation of absorptive NO_x -removal has led into two directions. On one hand, the mechanism of absorption and formation of products has been investigated. On

TABLE 2. REACTIVE ADDITIVES USED FOR NO_x-ABSORPTION

reactive additive	NO-absorption	NO ₂ -absorption	NO _x -absorption
water (11)	-	+	-
0.23 M hydroquinone, acidified with 2 M H ₂ SO ₄ (28)	-	++	-
0.5 M oxalic acid (28)	-	+	-
1 M diamide (28)	-	++	++
Cr(II)/Cr(III)-system (21)	-	+	+
urea (11, 29)	-	+	-
sulfanilic acid (25)	-	+	+
0.25 M NaSO ₃ (30)	-	+	+
acidified FeSO ₄ + simultaneous SO ₂ -absorption (11)	+	+	+
0.04 M morpholine (28)	-	+	+

- : no absorption occurs with the reactive solvent

+ : $\leq 50\%$ of NO_x-absorption occurs in an impinging system

++: $> 50\%$ of NO_x-absorption occurs in an impinging system

the other hand mass transfer data have been evaluated. Both have been carried out in lab scale testing equipment.

Before carrying out the experiments, the equipment was calibrated with the test system SO₂/air/solvent.

Equipment used for Testing the Chemistry and Mechanism of NO_x-Absorption

Mechanism and formation of products have been investigated in an impinger, which is comparable with a foam scrubber.

The test-gas used in the experiments has been prepared by mixing air or nitrogen with NO and/or NO₂ (respectively SO₂ for calibrating the impinger). The flow rate of both gases has been controlled by thermoanemometric regulation (RV1, RV2). The NO_x-content has been measured by chemiluminescence detection, the SO₂ and N₂O-content by non dispersive infrared detection. Figure 3 shows the principal flowchart of the experimental set-up.

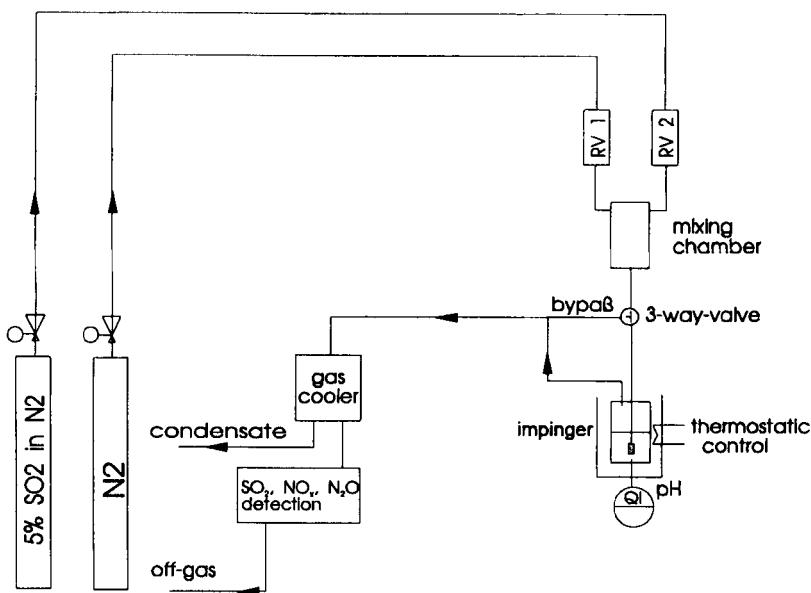


FIGURE 3. Flowchart of the experimental set-up used for investigating the mechanism of NO_x -absorption

Equipment used for Testing the Mass Transfer in NO_x -Absorption

Mass transfer data were determined through experiments in a film absorptive column. The film absorber is designed as a concentric tube apparatus (figure 4).

The size of the film absorber is 2.13 m in active height, an inner diameter of 33.4 mm and an outer diameter of 49.5 mm of the concentric annular gap.

The solvent, stored in a tank, is pumped to the top of the column and is distributed on top of the inner tube. At the bottom of the film absorber, drillings in the inner tube enable the draining of the solvent.

The test gas has been prepared by mixing compressed air with NO_2 (SO_2 for calibration of the film column). Pressure and temperature control permits evaluation of the standard flow rate. The gas enters the column at the bottom and moves up the concentric annular gap. At the bottom and at the top of the column, on-line measurement of the gaseous phase enables integral analysis of the experimental results.

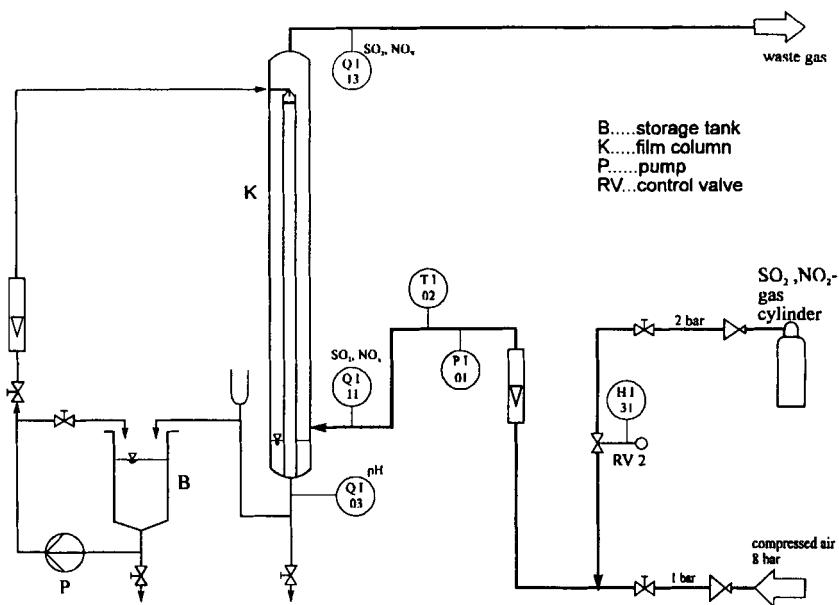



FIGURE 4. Flowchart of the experimental set-up used for investigating the mass transfer of NO_x-absorption

CALIBRATION OF THE EXPERIMENTAL SET-UP

Calibration of the Equilibrium Equipment

The performance of the absorption device was tested with the test system SO₂/air/solvent. This absorption process may be observed to be controlled by the gas phase resistance, as shown by equations 12 to 15. Chemical boundaries of the test system at 25°C are (21):

Under consideration of electroneutrality, the vapor pressure of SO_2 may be correlated with the pH-value according to equation 16:

In accordance with equation 16, the vapor pressure of SO_2 is negligible at elevated pH-values and at equilibrium with an aqueous phase, as demonstrated by figure 5.

As shown by figure 5, the vapor pressure for SO_2 of an aqueous solution is less than 1 ppmv at pH-values above 6.3. The gaseous concentration of SO_2 at the interphase may therefore be assumed to be negligible too. Under these conditions mass transfer is assumed to be controlled by the transport of SO_2 from the gaseous bulk phase to the interphase.

The calibration tests were therefore carried out with an aqueous solution of sodium hydroxide. Based on the chemical fundamentals represented by equation 16, the experimentally obtained content of SO_2 in the off-gas of the test unit was negligible even at very high SO_2 -contents in the feed-gas of $4000 \text{ mg SO}_2/\text{m}^3$.

On account of these results, the investigation of the chemistry of NO_x -absorption in the described test unit may be based on the fact that it is possible to achieve equilibrium conditions in the calibrated impinger test unit.

Calibration of the Mass Transfer Equipment

According to the calibration of the impinger, the calibration tests were carried out with the calibration gas SO_2 and the solvent sodium hydroxide again. Table 3 shows the experimentally obtained data for the film column ($T=298 \text{ K}$).

The experiments were compared by the HTU-NTU-concept which describes the height of the absorber. As mentioned the concentration of SO_2 is negligible at elevated pH-values. The concentration of SO_2 at the interphase is then assumed to be zero and the NTU-value (number of transfer units) is correlated by equation (17).

$$NTU_g = \int \frac{dc}{c - c_I} = \ln \frac{c_{bottom}}{c_{top}} \quad (17)$$

The height of the transfer unit (HTU) is given by following equation:

$$HTU_g = \frac{G}{\beta_g * a * S} \quad (18)$$

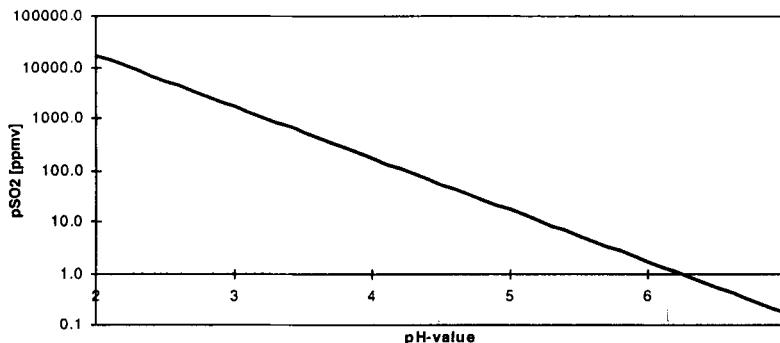


FIGURE 5. Correlation of the maximum content of SO₂ in the gaseous phase at equilibrium with an aqueous phase and at different pH-values

TABLE 3: SO₂-CONTENT AT THE BOTTOM AND AT THE TOP OF THE ABSORBER

<i>solvent [l/h]</i>	<i>G [m³/h]</i>	<i>wg [m/s]</i>	<i>c_{bottom} [mg/m³]</i>	<i>c_{top} [mg/m³]</i>
20	3.3	0.9	982	305
20	5.6	1.5	995	344
20	7.8	2.0	1004	376
20	10.0	2.6	1004	388
20	12.2	3.2	995	396
40	3.3	0.9	1018	312
40	5.6	1.5	1010	338
40	7.8	2.0	1002	359
40	10.0	2.6	993	372
40	12.2	3.2	998	382
60	3.3	0.9	992	298
60	5.6	1.5	1010	323
60	7.8	2.0	995	345
60	10.0	2.6	988	358
60	12.2	3.2	1002	371

The height of the absorber can be calculated with equation (19) if the gaseous mass transfer coefficient β_g is known. Choosing an appropriate mass transfer model enables the interpretation of the experimental data and the comparison with the actual absorber height.

$$H = HTU * NTU \quad (19)$$

As reported in literature, equations 20-22 describe the mass transfer from the gaseous bulk phase to the interphase of a film absorber (22). The region of validity is between $2,000 \leq Re_g \leq 35,000$ with w_g being the dry gas velocity.

$$Sh_g = 0.023 * Re_g^{0.83} * Sc_g^{0.44} \quad (20)$$

$$Re_g = \frac{w_g * d}{\nu_g} \quad (21)$$

$$Sc_g = \frac{\nu_g}{D_g} \quad (22)$$

The calculation of the liquid phase mass transfer is described by equation 23-28:

$$Sh_l = 1.39 * Re_l^{0.33} * Sc_l^{0.5} * Ga^{0.167} * \Gamma^{-0.5} \quad (23)$$

$$Re_l = \frac{w_l * d_{hydr}}{\nu_l} \quad (24)$$

$$Ga = \frac{g * d_{hydr}^3}{\nu_l^2} \quad (25)$$

$$\Gamma = \frac{H}{d} \quad (26)$$

The hydraulic diameter d_{hydr} and the film thickness correlate with equation 27:

$$d_{hydr} = 4 * f \quad (27)$$

The film thickness is calculated from the volume flow rate of the solvent by equation 28 (validity range $Re_l \leq 1600$ (23)).

$$\dot{L} = d * \pi * \frac{g * f^3}{3 * \nu_l} \quad (28)$$

Comparing the experimental data with mass transfer models from literature shows good accordance for gaseous phase controlled mass transfer (Figure 6).

RESULTS AND DISCUSSION

According to table 2 several additives were investigated. As mentioned, different gas mixtures, including NO/N₂, NO₂/N₂, NO_x/N₂, NO/air, NO₂/air and NO_x/air, were used. In general, the investigation concentrated on the absorption of NO. The results are discussed below.

Test of the Solvent Water

Absorption of NO in water is determined by a very low solubility. As reported elsewhere (10), the Henry coefficient of NO is $H = 28,000$ bar at a temperature of 298 K. Absorption of NO₂ takes place more readily. The degree of absorption depends on the NO₂-content in the gaseous phase (11). Synergetic effects on the coabsorption of NO have not been detected. Figure 7 shows the various mechanism of NO_x-absorption in water.

Test of the Redox-additives Hydroquinone and Oxalic Acid

Based on the fundamental thermodynamic equation of NO-reduction (15), the absorptive removal of nitrogen monoxide should be possible with the redox-system hydroquinone/quinone in accordance with following mechanism:

Experimental tests in the impinger showed that NO cannot be absorbed under these conditions. NO₂ seems to be absorbed quantitatively. But detection shows that NO₂ is quantitatively transferred into NO by oxidizing hydroquinone to quinone. Similar results were achieved when testing oxalic acid, which has better reducing properties in comparison with hydroquinone.

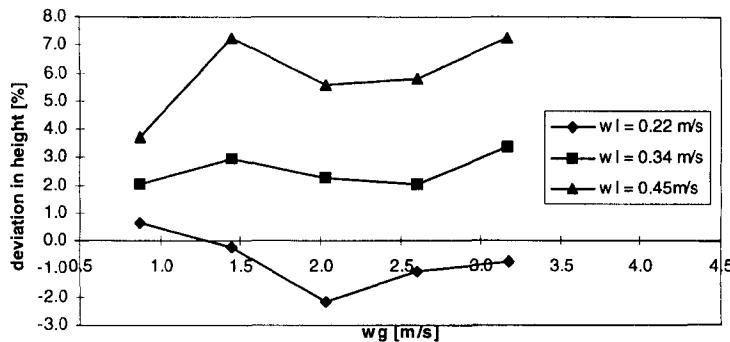


FIGURE 6. Height of the film absorber in comparison with the mass transfer model

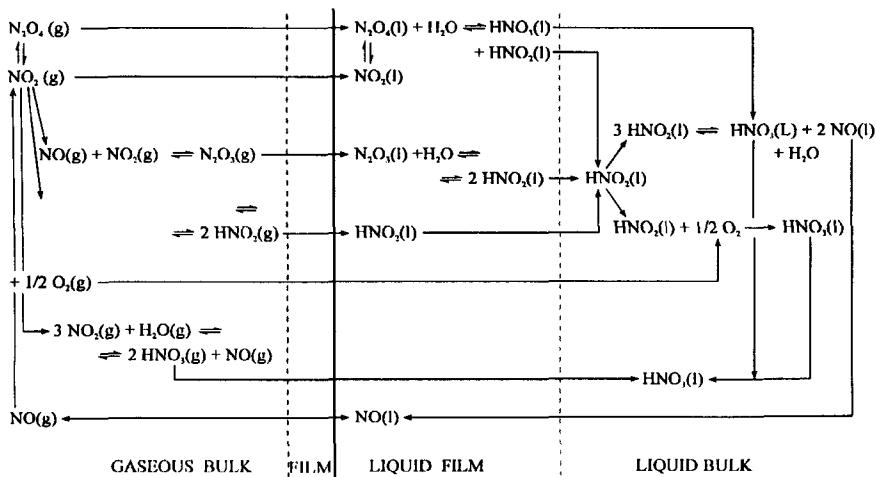


FIGURE 7. Absorption mechanism of NO_x in water (24)

Test of Urea

Urea, which has successfully been applied in selective catalytic reduction of NO_x, is also known for its ability to reduce aqueous HNO₂ to nitrogen and water under strongly acidified conditions (25, 29). Its application led to the result that the activity does not differ from the absorption properties of pure water. In accordance with the products formed during absorption of NO₂ in water, increasing concentrations of nitrate in the aqueous phase were observed.

Test of the Redox-system Cr(II)/Cr(III)

Compared to urea and oxalic acid the redox-system Cr(II)/Cr(III) is a reversible redox-system. Practical tests showed, that this additive is not able to remove NO by redox-absorption. NO₂ is well absorbed, but it is definitely converted to N₂O only and therefore not permitted for the absorption of NO_x.

Test of the Redox-system Sulfite/Sulfate

Literature reports successful absorption of NO when absorption takes place simultaneously with SO₂. SO₂ is oxidized by forming sulfuric acid, while NO is reduced. The additional use of the carrier Fe(II) is necessary, as SO₂-carriers (e.g., Na₂SO₃) themselves do not show sufficient reactivity (26, 27). This process does not leave gaseous products only. Several aqueous by-products are formed too.

In general NO cannot be removed from off-gas by absorption without previous oxidation to NO₂ except, when using the additive Fe-II, which is able to form a nitrosyl complex. The second process, which is able to remove NO without pretreatment, the coabsorption process with SO₂ causes the formation of liquid byproducts. Technical applicability of these processes is therefore limited too.

Test of the Redox-system NO_x /Diamide

With regard to the electrochemical potential, diamide should enable promising separation results. The further investigations have therefore been concentrated on the activity of this additive.

As mentioned and as reported in literature (11), NO_2 -absorption depends very much on the initial NO_2 -content of the gaseous phase. The main reason is the instant formation of N_2O_4 from NO_2 . The Henry coefficient of N_2O_4 is smaller than the Henry coefficient of NO_2 (table 1). Therefore the amount of NO_x -absorption in pure water decreases with decreasing NO_2 -content in the feed gas, as demonstrated by figure 8.

As shown by figure 8, the amount of absorption of NO_2 in water covers a wide range of absorptivity and it depends on the feed content of NO_2 . Increasing the content of the additive diamide causes an increase of absorption too. It finally leads to a complete removal of NO_2 at elevated concentration of diamide, independent of the initial NO_2 -content. At a diamide concentration of 1 M the conditions for a gas-phase controlled mass transfer process should therefore be achieved. Increasing the temperature will enable the same result at lower concentration of diamide in the aqueous phase, as demonstrated by figure 9.

In a further step NO/NO_2 -mixtures have been absorbed in dilute aqueous diamide at 293 K. The mixture of the nitrous gas has been varied from 0 - 100 % and the total NO_x -content between 10 and 1000 ppmv. Figure 10 shows the ratio of absorption with a feed content of 10 ppmv NO_x . As shown, NO_2 is completely absorbed (according to its feed, coabsorption of NO is indicated by the total ratio of absorption). N_2O -formation was not detected.

In a further step the experiment was repeated with an increased feed content of 100 ppmv NO_x ($\text{NO} + \text{NO}_2$) as demonstrated by figure 11. The experiment resulted in similar absorption behavior. Coabsorption of NO caused the formation of N_2O . The maximum formation of N_2O was detected at a ratio of NO/NO_2 of 1 and seems to be symmetric to the NO/NO_x ratio.

Coabsorption of NO and formation of N_2O increases with increasing feed content. As shown by figure 12 the formation of N_2O passes a maximum at a ratio of NO/NO_2 of 1 in general. According to figure 10-12 the reduction of NO is of the same amount as the formation of N_2O . Comparing the formation of N_2O_3 in the gaseous phase with the

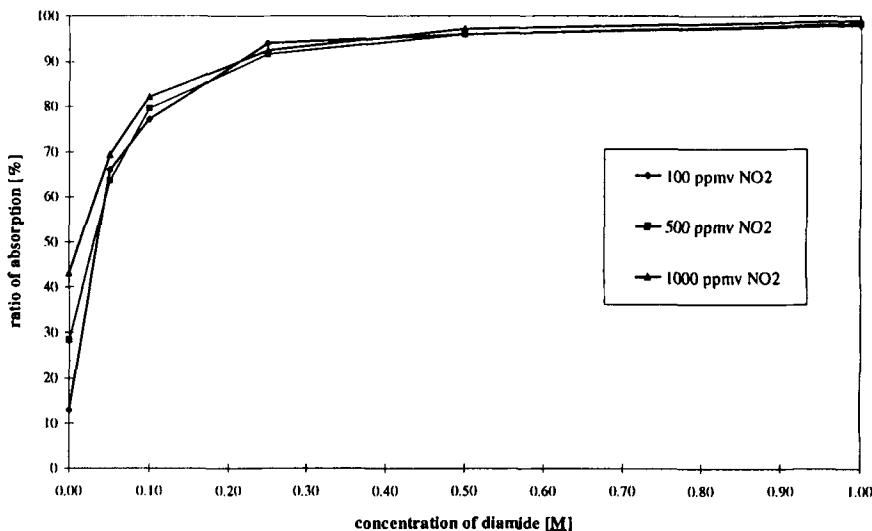


FIGURE 8. Absorption of NO₂ in aqueous solution of diamide at 293 K and ambient pressure. The initial NO₂-content and the concentration of diamide have been varied.

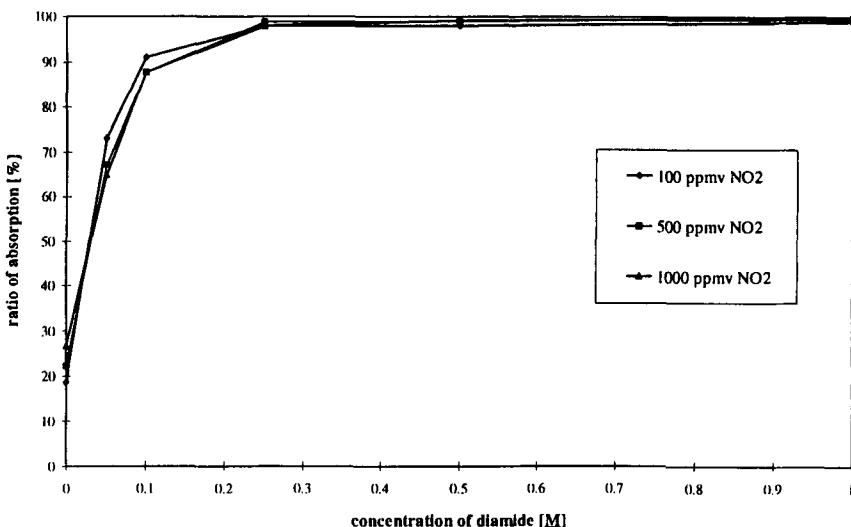


FIGURE 9. Absorption of NO₂ in aqueous solution of diamide at 313 K and ambient pressure. The initial NO₂-content and the concentration of diamide have been varied.

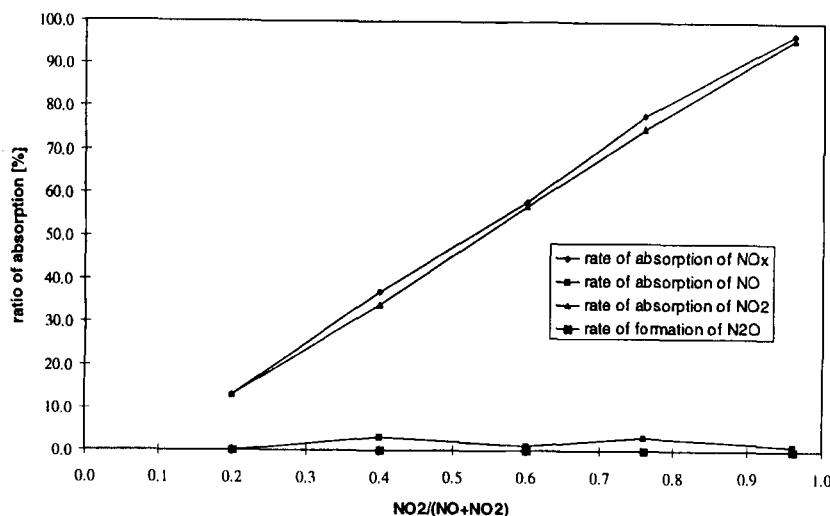


FIGURE 10. Rate of NO_x -absorption; feed gas: 10 ppmv NO_x ; $T=293$ K; diamide: 1 M

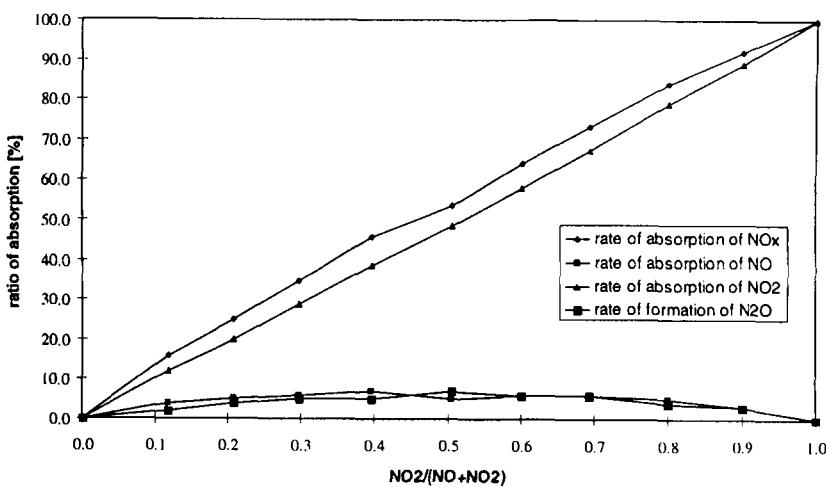


FIGURE 11. Rate of NO_x -absorption; feed gas: 100 ppmv NO_x ; $T=293$ K; diamide: 1 M

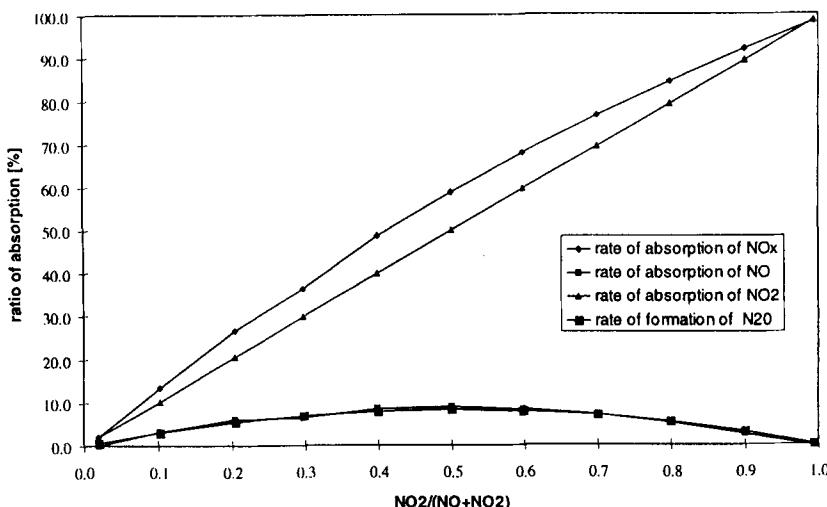


FIGURE 12. NO_x-absorption rate, 500 ppmv NO_x in the feed gas, T=293 K, 1 M diamide

formation of N₂O in the impinger shows similar results (see equations 3,8 and figure 2). This indicates the mechanism of reaction:

Figure 13 shows the results of the investigation of the effect of temperature on the formation of N₂O.

With regard to technical application, which demands absorptive denoxing processes without byproducts (e.g. N₂O), NO has to be completely oxidized in a first step and can then be absorbed quantitatively in dilute aqueous diamide.

During the second part of the program mass transfer of NO₂-absorption was investigated.

Compared with the theoretical value of gase-phase controlled absorption, has been derived from equation 20-28, the absorption of NO₂ by dilute aqueous diamide is also affected by the reaction in the liquid phase. Figure 14 demonstrates the comparison of the mass transfer of NO₂ when using the solvents water and dilute aqueous diamide.

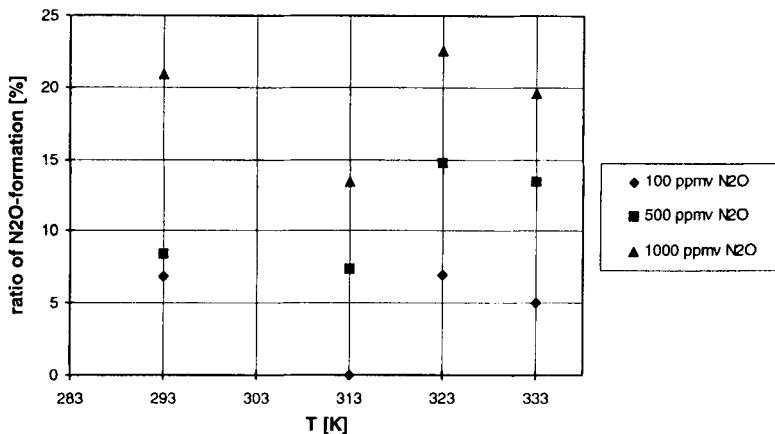


FIGURE 13. N₂O-formation; temperature: 293 - 333 K; ratio of NO/NO₂ = 1

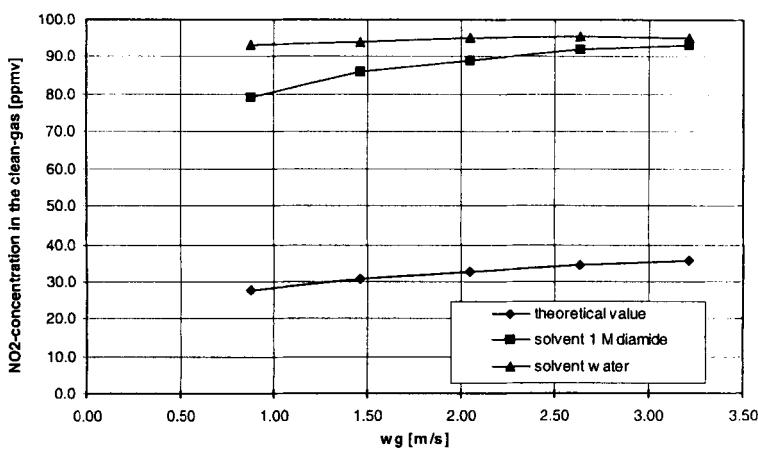
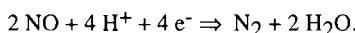



FIGURE 14. Investigation of the mass transfer of NO₂ at ambient temperature and pressure; gaseous feed content: 100 ppmv NO₂; diamide: 1 M

As reported in the literature (11), NO₂-absorption in water depends very much on the concentration of NO₂ in the feed gas. The reason is based on the instant equilibrium of NO₂ with the dimer N₂O₄ (figure 2). Absorptivity passes a minimum at a feed content of 100 ppmv, as shown by figure 15. This minimum is caused by the intersection of two different mechanismn of absorption. When considering smaller feed contents, the absorptivity is controlled by the reaction of NO₂ with the solvent. With increasing feed contents the mass transfer is affected by the instant formation of N₂O₄ in the gas-phase. As shown by table 1, the Henry coefficient of N₂O₄ is smaller compared with the Henry coefficient of NO₂. Mass transfer, determined by N₂O₄ absorption, must therefore increase with increasing NO₂-content.

SUMMARY

The chemical fundamentals and the basic mass transfer problems of several absorption processes have been investigated. The objective of the program has been the evaluation of processes for the separation of nitrogen monoxide. The investigations have been based on the redox-reaction

Within this program several additives in aqueous solutions (e.q. acidified hydroquinone, oxalic acid, diamide, urea, Cr(II)/Cr(III), sulfanilic acid, sodium sulfite and acidified iron sulfate + simultaneous absorption of SO₂) have been investigated.

Investigation has led into two directions. On one hand, the mechanism of absorption and the formation of products have been investigated. On the other hand mass transfer data have been evaluated. Before carrying out the experiments, the equipment was calibrated with the test system SO₂/air/solvent. A model, considering gas phase controlled mass transfer was applied.

NO-absorption only occurred with acidified iron sulfate in presence of SO₂ which causes the formation of liquid by-products. Technical applicability of this process is therefore very limited. These investigations have led to the result that, in general, NO cannot be removed from off-gas by absorption without prior oxidation to NO₂.

Beside several additives of interest the program has centered on the investigation of the absorption properties of dilute aqueous diamide. Diamide use leads to a complete removal

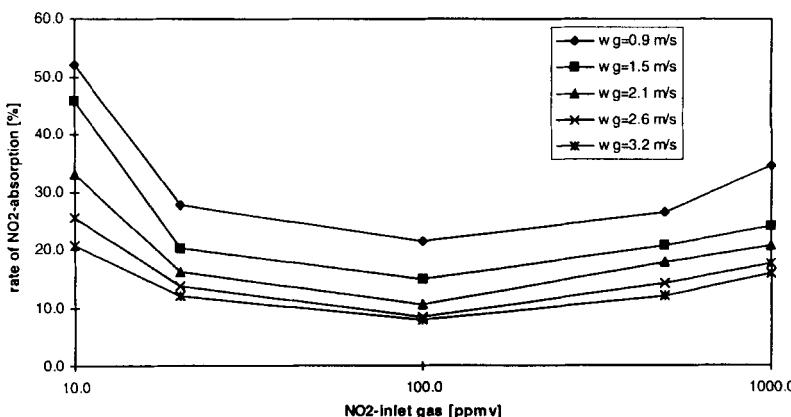



FIGURE 15. Mass transfer experiments dependent upon NO₂ feed concentration in 1 M diamide solutions at ambient temperature and pressure

of NO₂. Increasing the temperature will enable a similar result at lower concentration of diamide in the aqueous phase.

In a further step NO/NO₂-mixtures have been absorbed in dilute aqueous diamide. Co-absorption of NO and formation of N₂O increases with increasing total feed content. The formation of N₂O passes a maximum at a ratio of NO/NO₂ of 1 in general. Comparing the formation of N₂O₃ in the gaseous phase with the formation of N₂O in the impinger shows similar results. This indicates the reaction mechanism

Compared with the theoretical value of gaseous mass transfer controlled absorption, which has been derived from the evaluated mass transfer model from the literature, the absorption of NO₂ by dilute aqueous diamide is also affected by the reaction in the liquid phase at small feed contents. When increasing the feed content, absorption is positively affected by N₂O₄, which is instantaneously formed from NO₂.

ACKNOWLEDGMENTS

This project has been supported by the Austrian Forschungsförderungsfonds für die gewerbliche Wirtschaft, project No. 3/9752

REFERENCES

1. K. Kustin, I.A. Taub and E. Weinstock, Inorganic Chemistry 5/6, 1079 (1966)
2. E. Sada, H. Kumazawa, N. Tsuboi, I. Kudo and T. Kondo, Ind. Eng. Chem. Process Des. Dev. Vol. 17/3, 321 (1978)
3. E. Sada, H. Kumazawa, I. Kudo and T. Kondo, Ind. Eng. Chem. Process Des. Dev. 19, 377 (1980)
4. E. Sada, H. Kumazawa, I. Kudo and T. Kondo, Ind. Eng. Chem. Process Des. Dev. 20 49 (1981)
5. S. Bosio, A. Ravella, G.B. Saracco and G. Genon, Ind. Eng. Chem. Process Des. Dev. 24, 149 (1985)
6. W. Weisweiler, R. Blumhofer and T. Westermann, Chem. Eng. Process 20, 155 (1985)
7. W. Weisweiler and T. Westermann, Chem.-Ing.-Tech. 61/7, 551 (1989)
8. K.R. Jethani, N.J. Suchak and J.B. Joshi, Gas Separation & Purification 4/3, 8 (1990)
9. W. Zapfel, R. Marr and M. Siebenhofer, Staub Reinhaltung der Luft 55, 229, (1995)
10. S.E. Schwartz and W.H. White, Advances in environmental science and engineering 4, (1981)
11. J.B. Joshi, V.V. Mahajani and V.A. Juvekar, Chem. Eng. Commun. 33, 1 (1985)
12. M. Bodenstein, Lindner and F. Boes, Zeitschrift für physikalische Chemie 100, 68 (1922)
13. R. J. Meyer and E. Pietsch, Gmelins Handbuch der anorganischen Chemie Band 4, Verlag Chemie, Berlin (1936)
14. W. Fritz and H. Kern, Reinigung von Abgasen, Vogel Verlag, Würzburg (1990)
15. R. C. Weast, Handbook of Chemistry and Physics 57th ed, CRC Press, Cleveland (1976)
16. E. Weber, Verfahren zur simultanen Abscheidung von Stick- und Schwefeloxiden mit Hilfe von Erdalkaliverbindungen und Eisenchelatkomplexen; Offenlegungsschrift DE 3245721 A1 (1982)
17. B. Heiting, Untersuchungen zur simultanen Abscheidung von Stickoxiden (NO_x),

SO₂ und Feinstaub mit Fe(II)-EDTA Komplexsalzlösungen in einbaulosen Waschern, VDI-Verlag Düsseldorf, (1982)

18. E. Sada, H. Kumazawa, Y. Sawada and T. Kondo, Ind. Eng. Chem. Process Des. Dev. 21, 771 (1982)
19. W. Weisweiler, B. Retzlaff and L. Raible, Chem.-Eng. Process, 18, 85 (1984)
20. K. Jüttner, G. Kreysa, K. Kleifges and R. Rottmann, Chem.Ing.Tech. 66/1, 82 (1994)
21. F. Seel, Grundlagen der analytischen Chemie; Verlag Chemie, Weinheim (1973)
22. R. A. W. Vauck and A. H. Müller, Grundoperationen chemischer Verfahrenstechnik 10th ed., Deutscher Verlag für Grundstoffindustrie, Leipzig (1994)
23. P. Grassmann, Physikalische Grundlagen der Verfahrenstechnik, Salle + Sauerländer, Frankfurt (1983)
24. J. Roiron, Nitrogen 88 British Sulphur's 12th international conference (1988)
25. G. Jander and E. Blasius, Einführung in das anorganisch-chemische Praktikum 10th ed., Hirzelverlag, Stuttgart (1977)
26. W. Weisweiler and R. Blumhofer, Chem.-Ing.-Tech. 55/10, 810 (1983)
27. H. Takeuchi, M. Ando and N. Kizawa, Ind. Eng. Chem. Process Des. Dev., 16/3, 303 (1977)
28. M. Siebenhofer, VTU-Engineering GmbH, Graz, Austria, unpublished data, 1993
29. A. Lasalle, C. Roizard, N. Midoux, P. Bourret and P. J. Dyens, Ind. Eng. Chem. Res. 31, 777 (1992)
30. W. Weisweiler and R. Blumhofer, Chem. Ing. Tech. 55/10, 810 (1983)
31. J. Bart and K. Burtscher, Distillation and Absorption 1992 Symposium Series No. 128, EFCE No. 94, Birmingham (1992)